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A B S T R A C T

In viral respiratory infections, bacterial co-pathogens are widely known to co-infect, and they significantly in-
crease the morbidity and mortality rate. During the influenza season, the advent of 2019-nCoV (novel corona-
virus) has led to the widespread use of oral and intravenous antibiotics and inhibitors of neuraminidase enzyme.
Owing to causes such as extended intubation, the ubiquitous use of intrusive catheters, and compromised host
immunity, coronavirus disease (COVID-19) patients are at heightened risk of secondary bacterial and fungal in-
fections, leading to the difficulty in their treatment. Apart from the pandemic, the primary risk is a likely surge in
multidrug resistance. In this work, we evaluated the coalescence of present co-infection alongside the COVID-19
and post-pandemic antimicrobial resistance due to high ongoing drug use for the treatment of COVID-19. We
found that while there is currently limited evidence of bacterial infections in COVID-19, available proof supports
the restricted use of antibiotics from an antibiotic stewardship viewpoint, primarily upon entry. Paramount at-
tempts should be made to collect sputum and blood culture samples as well as pneumococcal urinary antigen
monitoring in order to endorse stringent antibiotic usage. For antimicrobial stewardship, inflammatory markers
like procalcitonin have been added, but such biomarkers are typically upraised in COVID-19. Antimicrobials
cannot be completely removed in wastewater treatment plants (WWTPs) and once they enter the water envi-
ronment, possesses a great risk of inducing resistance to drugs in microbes. Hence, their prescription and ad-
ministrations should be regulated and alternate solutions such as vaccines, preventive measures and personal
hygiene should be given top priority. It is imperative to establish an antimicrobial strategy discrete to COVID-19,
as this pandemic has caused an outbreak of numerous other associated diseases and has the potential to drive
microbial resistance. Coordinated plans are essential for this at the citizen, health-care and policy levels.
1. Introduction

Antibiotics have had a decent mantle in the treatment of bacterial co-
infections with respect to the treatment of COVID-19. Nevertheless, as-
severations suggest that antimicrobials have been prescribed unfairly. In
comparison, in a futile effort to shield themselves from the infection,
many individuals self-medicate with antibiotics. In developing countries,
this convention is particularly prevailing [1]. In viral respiratory tract
infections like influenza, bacterial co-pathogens are widely recognized,
requiring prompt diagnosis and antibacterial treatment [2–4]. The
prevalence, occurrence and characteristics of bacterial infection in pa-
tients with severe acute coronavirus 2 respiratory syndrome (SAR-
S-CoV-2) is off the beaten track and has been established as a major
, payal93@iitg.ac.in (P. Mazumde
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information deficit [5,6]. Several guidelines promote the use of
first-hand antibiotics for acute COVID-19 patients, extrapolating ques-
tions about elevated impermanence in patients with bacterial superin-
fection throughout influenza pandemics [7,8]. This hypothesis, however,
raises concerns about antibiotic usage and ensuing bacterial
resistance-related damage. Basic conditions and risk factors for bacterial
and fungal infections, such as chronic respiratory diseases, corticosteroid
treatment, immunoinflammatory reaction (cytokine storm) and intuba-
tion/mechanical ventilation, are shared by COVID-19 hospitalized pa-
tients in intensive care units (ICUs). In 50% of COVID-19 deaths,
secondary infections were detected. Bacterial and fungal secondary in-
fections or co-infections are also a likely cause impacting the mortality of
COVID-19 patients who are seriously ill [9].
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The new COVID-19 pandemic will definitely change the landscape of
antimicrobial resistance (AMR), as many hospitalized COVID-19 patients
are medicated with broad-spectrum antibiotics with uncertain effec-
tiveness [10–18]. Redundant doses of antibiotics upon hospitalization
can raise the individual risk of severe hospital-acquired pneumonia
(HAP) and other adverse events, as COVID-19 patients also require res-
piratory assistance and extended hospitalization [19,20]. The prevalence
of use of antibiotics (94–100%) was much greater in-hospital care than
the recorded occurrence of secondary infection (10–15%) [21]. The
average fraction of COVID-19 patients with bacterial co-infection was
found to be 6.9% [22]. In general, antibiotic usage was widespread, with
fluoroquinolones and cephalosporins comprising 74% of the prescribed
antibiotics. Eleven percent of patients were estimated to have
co-infections, mainly secondary infections in the largest SARS-CoV-1
series of patients, and a small role for bacterial infections in Middle
East respiratory syndrome coronavirus (MERS-CoV) among studies
reporting on other coronaviruses [23]. Among other coronavirus
outbreak records, 11% of the COVID-19 patients were estimated to have
bacterial co-infections, chiefly secondary infections in the prodigious
SARS-CoV-1 patients, and minimal involvement of bacterial infections in
MERS [24]. Respiratory infections of viral origin that were previously
reported as epidemics and pandemics have documented bacterial
co-infections that complicate the inceptive viral disease. The H1N1 flu
pandemic (2009), encountered 30% bacterial infection in seriously ill
patients [25,26] and 12% in non-ICU hospitalized patients [27]. The
most frequently known bacterial co-pathogens were identified to be
Streptococcus pneumoniae and Staphylococcus aureus [25,27].

The ubiquity of secondary infection in SARS-CoV-2 infected patients
is not well known. Present wastewater treatment technology cannot
provide complete removal of antibacterial biocides. These compounds
will then aggregate in various environmental compartments, affecting
the functioning of autochthonous microbes. Consequently, the occur-
rence of antimicrobials in the environment can promote the prevalence of
AMR [28–30]. Considering the above said reasoning, we put an effort
first to understand the possibilities of other microbial co-infections
alongside of COVID-19; and then evaluate the rationale of multidrug
prescriptions for the treatment of COVID-19 to finally assess the threat of
antimicrobial resistance scenario in the post-COVID-19 era. We wish to
contribute raising awareness so that the pre-problem measures can be
subsequently taken via an antibiotic stewardship perspective.

2. Coalescence of COVID-19 and other microbial co-infection

The novel coronavirus infects its target cells with the help of the
angiotensin-converting enzyme 2 (ACE2) receptors, which is eminently
expressed in the epithelial cells of the alveoli, and also in the intestinal cells,
kidney and heart [31,32]. While SARS-CoV-2 is recognized as an airborne
respiratory virus, the identification of the virus in fecal matter and dark
water is indicative of its enteric presence in prudent aquatic ecosystems
[33]. Bronchial aspirate cultures fromCOVID-19 patientswere analyzed for
colonized bacterial and fungal species of which 57% turned positive for
co-infection [34]. Pathogenic fungi species identified by Matrix-Assisted
Laser Desorption Ionization- Time of Flight Mass Spectrometry (MALDI--
TOF) were: 1Aspergillus fumigatus (3%), 4 Candida glabrata (11.4%) and 14
Candida albicans (40%). In rest samples, Pseudomonas aeruginosa (n ¼ 6,
17%), Klebsiella pneumoniae (n¼ 1, 3%), Staphylococcus epidermidis (n¼ 1,
3%), Staphylococcus aureus (n ¼ 2, 5%), Klebsiella oxytoca (n ¼ 1, 3%),
Escherichia coli (n¼ 1, 3%),Enterobacter cloacae (n¼ 1, 3%)were identified.
Out of other 8.6% (3) samples, both P. aeruginosa and C. albicans were ob-
tained. Marcy l’Etoile and bioM_erieux Vitek cards (France) were used to
determine antimicrobial susceptibility of the clinical isolates. Of the 35
patients with SARS-CoV-2 lung infection and accompanying positive
co-infections, 80%(28)wereeither fungalorP. aeruginosa colonized.Onthe
contrary, in 2019, ICU patients negative with COVID-19, P. aeruginosa or
fungal (A. fumigatus, C. parapsilosis and C. albicans) colonization was barely
seen in 20% per cent of the patients.
2
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In three distinct Dutch core studies, bacterial secondary infections
were reported in 29, 100 and 107 SARS-CoV-2 positive patients [35–37].
The number of patients with possible bacterial respiratory co-infection
upon diagnosis in these three cohorts was 8% or fewer and further
down (<3%) in patients in ICU, relative to the two COVID-19 patient
groups (7–8%). Two reports from Wuhan (China) communicated bacte-
rial co-infections in COVID-19 positive patients admitted in hospitals [38,
39]. Recorded incidence of secondary infection was inconsistent amid
COVID-19 patients in various trials. Nevertheless, it may be as high as
50% amidst the non-survivors [40]. Bacterial pathogens found comprised
Staphylococcus aureus, Legionella pneumophila, Mycoplasma pneumoniae,
Streptococcus pneumoniae, Acinetobacter baumannii, Klebsiella pneumonia
and Chlamydia pneumonia; fungi: Aspergillus flavus and Candida species
and viruses: coronavirus, metapneumovirus, influenza, enter-
ovirus/rhinovirus, human immunodeficiency virus (HIV), parainfluenza
and influenza B virus.

Respiratory viruses like SARS-CoV-1 and MERS-CoV that cause sea-
sonal and/or pandemic influenza exhibit different degrees of fungal and
bacterial infections. Independent corroborations suggest that secondary
infections are rare in SARS-CoV-1 patients and there is no evidence of
such infections in the case of MERS-CoV [41,42]. In addition,
co-infection has been linked with more serious results in seasonal and
pandemic [43]. Thirty trials were involved, with 3834 patients. Overall,
bacterial co-infection resulted in 7% of hospitalized patients with
SARS-CoV-2 infection (n ¼ 2183, 95% CI 3–12%, I2 ¼ 92⋅2%). In mixed
ward and ICU conditions (4%, 95% CI 1–9%, I 2 ¼ 91⋅7%), a smaller
number of patients were co-infected as compared to patients in ICU
Fig. 1. Pernicious cycle of COVI

3

(14%, 95% CI 5-26, I 2 ¼ 74 ⋅7%). Pseudomonas aeruginosa, Mycoplasma
pneumonia andHaemophilus influenzaewere the typical causal bacteria for
the co-infection. The combined proportion of co-infection with viruses,
commonly influenza A and Respiratory Syncytial Virus, was only 3% (95
% CI 1-6, n ¼ 1014, I 2 ¼ 62 ⋅ 3%). There were also fungal co-infections
identified in three trials [44]. Positive infections in case (2 out of 5) of
nosocomial disease were reported to have bloodstream colonization with
Candida albicans. Bloodstream infection/septicemia with metal-
lo-β-lactamase (MBL) producing E. cloacae and K. pneumonia were iden-
tified [45]. One hundred seventy-four pathogens identified in COVID-19
positive patients with potential secondary infection were predominantly
Haemophilus influenzae, Staphylococcus aureus and Streptococcus pneumo-
niae. Exclusively 3 Gram-ve bacterial species had been identified in two
patients. Acinetobacter baumannii and Klebsiella pneumoniae were isolated
from the respiratory tract from one COVID-19 patient in China [46]. A
few other studies include 1 positive report of PCR for Mycoplasma
pneumonia, 0 positive for Legionella [47]. One from the two reports for
secondary infection published on bacterial pathogens [48,49]. Again, in
another study from China, among 3 g-negative species, 1 out of 29 (3%)
A. baumannii and 2 out of 29 (7%) Enterobacter cloacae were reported
[50]. Table 1 shows some of the features of COVID-19 positive hospi-
talized cases with secondary/co-infections. While all of the reported
cases showed co-infections with other diseases such as influenza and
pneumonia as the most common in them, some cases have also revealed
the multi-drug resistance nature of these pathogens isolated from blood,
urine and respiratory fluids.
D-19, co-infection and AMR.
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3. Antiviral and antimicrobial drug use scenario for COVID-19
treatment

Presently, no antiviral medication is available to cure SARS-Cov-2
infection; and it will also take a couple of years to produce one and
achieve clearance for it [51]. The vaccine developed by Pfizer-BioNTech
has passed safety and effectiveness checks, but as it is rolled out to mil-
lions of people, scientists and experts do have numerous concerns about
how this and other vaccines will work [52]. On the other hand, countries
India with their own developed vaccines will face technological diffi-
culties in vaccinating its large population. A big challenge would be
ensuring sufficiently suitably qualified individuals to deliver jabs [53]. At
the moment, Remdesivir, Ribavirin (nucleoside analogues), Favipiravir,
Griffithsin (inhibitor of SARS and MERS spike proteins) and Ritona-
vir/Lopinavir (protease enzyme inhibitors) [54], Abidol (Umifenovir)
[55], Oseltamivir (neuraminidase inhibitors), EK1 peptide, and
anti-inflammatory drugs are being employed to treat the patients. Cap-
sules Lianhua qingwen and ShuFeng JieDu (conventional Chinese anti-
biotic drugs) [56,57], and 3 TC and TDF (RNA synthesis inhibitors) are
used as available treatment alternatives for emerging respiratory infec-
tious diseases caused by SARS-CoV-2 [58]. All of these medications have
been utilized to cure past coronavirus outbreaks (SARS and MERS) or
other viral infections such as Ebola, influenza and HIV [59].

Two of the highly proficient drugs viz., Chloroquine and Remdesivir
were exclusively found efficient in aiding treatment of COVID-19 in vitro,
as compared to the various other drugs mandated by the U.S. Food and
Drug Administration’s (FDA’s) such as Penciclovir, Nafamostat, Riba-
virin, Favipiravir, Nitazoxanide, etc. The therapeutic efficiency of Chlo-
roquine is well known as the drug initially used for treating malaria and
several autoimmune diseases, is now being produced and imported/
exported worldwide to treat 2019-nCoV (2019 novel coronavirus)
infection [60,61]. Remdesivir, possessing an analogous structure to in-
hibitors of HIV reverse transcriptase, is reportedly under clinical trials for
curing 2019-nCoV ailment [62]. For the prevention of coronavirus dis-
eases such as acute influenza, the use of Ribavirin and Fabiravir in
combination with Oseltamivir shows a greater impact than that of
Oseltamivir alone [63]. In peracute hypoxemia, symptoms can be suc-
cessfully mitigated by combining antibiotics, lopinavir, alpha-interferon
and providing mechanical ventilation [64]. While there is no contem-
porary treatment for 2019-nCoV infection, immunomodulatory agents
like tocilizumab (a monoclonal antibody against interleukin-6/IL-6),
corticosteroids, etc., have been investigated to regulate the cytokine
storm that frequently emanates in the course of the COVID-19 infection
[65]. In clinical trials, intervening drugs can be categorized on the basis
of their essence and commendatory effects. In this respect, in addition to
the combination of remedial treatments, nutritional products, immuno-
modulators, antivirals, immunosuppressants, some well-known drugs
and antiparasitic drugs are contemplated in recent trials for disease
prevention supportive care and/or therapy. Within and beyond each
category of drugs, one can scarcely see the concordant mechanism of
action, but several drugs are contrived for a discrete ailment and repur-
posed afterwards for another condition [66]. Nanotherapeutics has also
been explored and in-depth observations briefed the suitability of such
nanomedicines to control COVID-19 outbreaks [67].

4. Antimicrobial resistance erred with COVID-19

COVID-19 renders favorable conditions for secondary infections and
aggravates AMR. Fig. 1 depicts the vicious cycle of COVID-19, co-in-
fections, antibiotic and antiviral drugs in the environment. It explains in
brief the cellular infection when SARS-CoV-2 enters the cells of the host
and the effect of various environmental and other factors that aids in the
occurrence of infection. The immuno-compromised patients are further
vulnerable to various diseases/co-infections (bacterial and viral) and
thus, are treated with antivirals and antimicrobials to treat the sec-
ondary infection. These drugs and their metabolites are released into
4

the environment and are often only partially removed/degraded in
WWTPs. When they are released into the environment and are exposed
to natural microbiota in the environmental water, they can induce
antimicrobial resistance and spread via horizontal gene transfer (HGT).
6⋅9% of the COVID-19 patients diagnosed from 5 different countries
indicate the presence of bacterial infections of which 3⋅5% acquired
concurrently with the disease and 14⋅3% post COVID-19), exacerbating
in ICU patients [68]. Aspergillus fumigatus in seriously immunocom-
promised hosts behaves as an opportunistic pathogen causing invasive
pulmonary aspergillosis (IPA). Prelusive studies indicated 19–33%
SARS-CoV-2 related IPA occurred in patients hospitalized in ICU with
serious COVID-19 [69,70]. Triazole-resistant A. fumigatus along with
IPA was reported in a 56-year-old COVID-19 patient admitted in ICU
[71]. The existence of Aspergillus is a prognostic sign of severity or is
only related to degenerating patient’s health is still, possibly leading to
death remains uncertain. Carbapenemase-producing Enterobacterales
(CPE)-E. coli has been observed in COVID-19 patients. Rectal swabs
screenings patients were conducted and analyzed with the help of
multiplex PCR as well as by culturing on selective chromogenic media
[72]. At the peak of the COVID-19 outbreak 5 instances of New Delhi
Metallo-betalactamase (NDM) causing Enterobacterales infections
along with serious hypoxemic respiratory failure were reported at
Bronx, NY medical centre which later was confirmed to be COVID-19
associated pneumonia [45]. The theoretical action against
NDM-producing Enterobacteria is shown by the administration of a
mixture of Ceftazidime-avibactam and Aztreonam [73]. Like other
multidrug-resistant species such as Methicillin-resistant Staphylococcus
aureus (MRSA), Carbapenem-resistant Enterobacteriaceae and Candida
auris can be spread in healthcare environments [74]. Before the vac-
cines for COVID-19 were developed and reached phase 2 of the clinical
trials, various antiviral drugs such as Lopinavir, Oseltamivir, Remde-
sivir, etc., were administered to the patients for reducing the symptoms
and treatment. These drugs are partially metabolized in the human
body and also are not completely degraded in WWTPs and/or altered
into different forms. Wild animals such as, bats, pangolins, camels,
boars, etc., which are natural reservoirs of viruses, when come in con-
tact with antiviral drug or their metabolite-containing environmental
water, triggers selective pressure leading to mutations that may
contribute to resistance in these viruses to antiviral drugs [28].

As antibiotics are anticipated to have a marginal advantage as prag-
matic therapy in COVID-19 treatment and results in auxiliary pernicious
effects viz., toxicity, adverse events, antibiotic resistance, and Clos-
tridioides difficile sepsis, it is advisable for clinicians to advocate them
aptly [75–78]. Increasing the statistics of presumptuous stratagems
linked with the prescription of antibiotics, immunomodulatory drugs
such as steroidal anti-inflammatory drugs and overpopulated in clinics
can contribute to an increase in nosocomial diseases. Simultaneously,
there could be a chance of worsening of the Healthcare-Associated Dis-
eases due to the sensitivity of the patient’s microbiota to these stimuli,
through the emergence and distribution of resistance aspects and further
virulent strains. In manually ventilated COVID-19 patients undergoing
immunomodulatory therapy, a tracheal aspirate test needs to be done at
the earliest and antibiotic treatment can be postponed till the test results
are accessed. Depending on the localized circumstances, the use of
empiric, broad-spectrum antibiotics in a vast number of cases was found
to be ineffective while, narrow-spectrum antibacterial drugs was favored
[79]. Both the World Health Organization (WHO) and the UK National
Institute for Health and Treatment Excellence’s COVID-19 related rec-
ommendations prohibit antibiotic treatment or prevention in the case of
suspicious and positive asymptomatic COVID-19 patients or patients with
paltry ailment but recommend administering antibiotics for suspected
bacterial co-infections [80,81]. The recommendation from the US Na-
tional Institutes of Health [82] reports inadequate evidence for antibiotic
treatment but concedes that all patients with mild to serious hypoxemia
are regularly administered broad-spectrum antibiotics by certain clini-
cians. The current edition of the Chinese clinical guidance released in
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March 2020, for the diagnosis and treatment of COVID-19 patients also
indicates that the improper use of antibiotics, largely broad-spectrum
drugs, without lucid details for factual antibacterial treatment or pro-
phylaxis should be prevented [83].

5. Tackling measures

The prevalence of telemedicine to control antimicrobial stewardship
has previously demonstrated an improved selection of antibiotics and
decline in resistance [84]. It is important to collect microbiological data,
primarily to classify formerly identified or evolving pathogens linked to
secondary co-infections in patients with SARS [85]. Epidemiological in-
vestigations with AMR surveillance systems that endorse the generation
of the standard datasets on the efficacy of antimicrobial intercession in
COVID-19 patients, particularly in acute stage patients in ICUs, should be
sustained [86]. Measures taken by people would also be quintessential in
sustaining the pandemic and mitigating its effect on our routine lives.
Appropriate use of personal hygiene devices like personal protection
equipment (PPE) kits, masks, adequate handwashing and maintaining
physical distancing should be continued to be safe from getting infected
and prepared for future waves [87]. The continuation of antimicrobial
treatment and duration of hospital stay of COVID-19 patients can be
shortened substantially with stewardship measures. Antimicrobial
governance initiatives should actively involve and train medical practi-
tioners and pharmacists to reduce mishandling of antibiotics during the
COVID-19 pandemic [88,89]. The recommendations made in this study
and their efficient inclusions in the formation of applicable policies and
the preparation of concrete instructions/guidelines will be crucial to
ensure our battle against AMR continues and the quest to conquer it
consummates.

6. Conclusion

We conclude that the overall proportion of secondary infection has
been poor among patients with COVID-19, but the prescription of anti-
microbials is soaring. There is inadequate proof to encourage the
extensive usage of empirical antibiotics, particularly in those COVID-19
hospitalized cases without serious illness. The average percentage of
COVID-19 patients with secondary co-infection is smaller than in prior
influenza pandemics, with minimal documentation of S. pneumonia, S.
Aureus and/or S. pyogenes, having a critical role to play. Predominantly,
these reports favor the termination of empiric antibiotics and antimi-
crobials in the patients afflicted with COVID-19 infection. The
disbursement of antibiotics to COVID-19 patients depends majorly on the
expertise and judgement of frontline medical practitioners, especially at
the initial phase of the outbreak of a pandemic. Antimicrobial steward-
ship projects have a vital role to play in reducing unnecessary antibiotic
usage and delivering expertise on highly AMR infections. Additional
guidelines on antibacterial therapy as in the case of patients with noso-
comial and ventilator-associated pneumonia, needs to be followed for
COVID-19 patients with secondary bacterial respiratory infection. More
comprehensive research on the epidemiology of secondary co-infections
in COVID-19 patients is exigently required to validate our conclusions. It
is the need of the hour to establish an antimicrobial strategy unique to
COVID-19 to tackle AMR. Investments in the development of wastewater
facilities, policy upgradation and public awareness are pivotal. Further-
more, to recognize the environmental effects of COVID-19 pandemic,
global surveillance systems and multidisciplinary research collaborations
are required.
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